1,060 research outputs found

    Mechanism of Laser-induced Field Emission

    Full text link
    We have measured electron energy distribution curves (EDCs) of the laser-induced field emission from a tungsten tip. Field emission from photo-excited nonequilibrium electron distributions were clearly observed, while no enhanced field emission due to optical electric fields appeared up to values of 1.3 V/nm. Thus, we experimentally confirm the emission mechanism. Simulated transient EDCs show that electron dynamics plays a significant role in the laser-induced field emission. The results should be useful to find optimal parameters for defining the temporal and spectral characteristics of electron pulses for many applications based on pulsed field emission.Comment: 4 pages 4 figures 1 table, submitted to Physical Review Letter

    Unlearning before Creating new Knowledge: A Cognitive Process.

    Get PDF
    Recent research expresses serious doubts on the \ concept of unlearning. It is argued that knowledge \ cannot be discarded or eliminated in order to make \ space for the creation of new knowledge. Taking into \ account the recent scepticism, we focus on the \ cognitive dimension of unlearning and propose an \ alternative conceptualization. Considering how far \ unlearning can go from a psychological/cognitive \ scientific perspective, we propose that unlearning is \ about reducing the influence of old knowledge on our \ cognitive capacity. This study: (a) investigates the \ unlearning process within the cognitive domain and \ on an individual level and (b) proposes unlearning \ process triggers that detract or facilitate the \ knowledge change process, which could subsequently \ contribute to unlearning on an organizational level

    Laser-induced Field Emission from Tungsten Tip: Optical Control of Emission Sites and Emission Process

    Full text link
    Field-emission patterns from a clean tungsten tip apex induced by femtosecond laser pulses have been investigated. Strongly asymmetric field-emission intensity distributions are observed depending on three parameters: (1) the polarization of the light, (2) the azimuthal and (3) the polar orientation of the tip apex relative to the laser incidence direction. In effect, we have realized an ultrafast pulsed field-emission source with site selectivity of a few tens of nanometers. Simulations of local fields on the tip apex and of electron emission patterns based on photo-excited nonequilibrium electron distributions explain our observations quantitatively. Electron emission processes are found to depend on laser power and tip voltage. At relatively low laser power and high tip voltage, field-emission after two-photon photo-excitation is the dominant process. At relatively low laser power and low tip voltage, photoemission processes are dominant. As the laser power increases, photoemission from the tip shank becomes noticeable.Comment: 12 pages, 12 figures, submitted to Physical Review

    Laser-induced field emission from a tungsten nanotip by circularly polarized femtosecond laser pulses

    Full text link
    We have investigated emission patterns and energy spectra of electrons from a tungsten nanotip induced by circularly polarized femtosecond laser pulses. Variations of emission patterns were observed for different helicities of circular polarization while the energy spectra remained almost identical. The physics behind this difference in emission patterns is the change in propagation directions of surface electromagnetic waves on the tip apex. The energy spectra showed the same spectroscopic signatures as the linearly polarized laser in a strong-field regime, which are a low-energy peak and a plateau feature. The low-energy peak is due to a delayed electron emission with respect to a prompt emission. The experimental data and plasmonic simulations support our previous conclusion, where the observed delayed emission processes originate from an inelastic rescattering process. This work demonstrates that the use of circular polarization is an easy means to add extra knobs to control the spatial and temporal emission from a nanotip at the nanometer and femtosecond scale. It could find applications as a helicity-driven subcycle optical switch

    Benzene degradation by Ralstonia pickettii PKO1 in the presence of the alternative substrate succinate

    Get PDF
    The regulation of benzene degradation by Ralstonia pickettii PKO1 in the presence of the alternative substrate succinate was investigated in batch and continuous culture. In batch culture, R. pickettii PKO1 achieved a maximum specific growth rate with benzene of 0.18h−1, while succinate allowed much faster growth (μmax=0.5h−1). Under carbon excess conditions succinate repressed benzene consumption resulting in diauxic growth whereas under carbon-limited conditions in the chemostat both substrates were used simultaneously. Moreover, the effect of succinate on the adaptation towards growth with benzene was investigated in carbon-limited continuous culture at a dilution rate of 0.1h−1 by changing the inflowing carbon substrate from succinate to different mixtures of benzene and succinate. The adaptation process towards utilisation of benzene was rather complex. Three to sevenhours after the medium shift biomass production from benzene started. Higher proportions of succinate in the mixture had a positive effect on both the onset of biomass production and on the time required for induction of benzene utilisation. Strikingly, after the initial increase in biomass and benzene-catabolising activities, the culture collapsed regularly and wash-out of biomass was observed. After a transient phase of low biomass concentrations growth on benzene resumed so that finally rather stable and high biomass concentrations were reached. The decrease in biomass and degradative activities cannot be explained so far, but the possibilities of either intoxication of the cells by benzene itself, or of inhibition by degradation intermediates were ruled ou

    Sophisticated Inference

    Get PDF
    Active inference offers a first principle account of sentient behaviour, from which special and important cases can be derived, e.g., reinforcement learning, active learning, Bayes optimal inference, Bayes optimal design, etc. Active inference resolves the exploitation-exploration dilemma in relation to prior preferences, by placing information gain on the same footing as reward or value. In brief, active inference replaces value functions with functionals of (Bayesian) beliefs, in the form of an expected (variational) free energy. In this paper, we consider a sophisticated kind of active inference, using a recursive form of expected free energy. Sophistication describes the degree to which an agent has beliefs about beliefs. We consider agents with beliefs about the counterfactual consequences of action for states of affairs and beliefs about those latent states. In other words, we move from simply considering beliefs about 'what would happen if I did that' to 'what would I believe about what would happen if I did that'. The recursive form of the free energy functional effectively implements a deep tree search over actions and outcomes in the future. Crucially, this search is over sequences of belief states, as opposed to states per se. We illustrate the competence of this scheme, using numerical simulations of deep decision problems

    X-CAD: Optimizing CAD Models with Extended Finite Elements

    Get PDF
    We propose a novel generic shape optimization method for CAD models based on the eXtended Finite Element Method (XFEM). Our method works directly on the intersection between the model and a regular simulation grid, without the need to mesh or remesh, thus removing a bottleneck of classical shape optimization strategies. This is made possible by a novel hierarchical integration scheme that accurately integrates finite element quantities with sub-element precision. For optimization, we efficiently compute analytical shape derivatives of the entire framework, from model intersection to integration rule generation and XFEM simulation. Moreover, we describe a differentiable projection of shape parameters onto a constraint manifold spanned by user-specified shape preservation, consistency, and manufacturability constraints. We demonstrate the utility of our approach by optimizing mass distribution, strength-to-weight ratio, and inverse elastic shape design objectives directly on parameterized 3D CAD models
    corecore